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There is a strong case for arguing that the application of relational thinking to solve number 

sentences embodies features of mathematical thinking that are centrally important to algebra. 

This study investigates how well students in Years 5, 6, and 7 in three countries were able to 

use relational thinking to solve different types of number sentences. There were other 

students who appeared to rely solely on computational method to solve the same number 

sentences. The study then examined whether those who had shown clear evidence of 

relational strategies to solve the number sentences were better placed to solve symbolic 

sentences than those who had used only computational methods on these number sentences. 

Relational Thinking 

In their study, “The algebraic nature of students’ numerical manipulation in the New 

Zealand Numeracy Project”, Irwin and Britt (2005) argue that the methods of compensating 

and equivalence that some students use in solving number sentences may provide a 

foundation for algebraic thinking (p. 169). These authors give as an example the number 

sentence 47 + 25 which can be transformed into 50 + 22 by “adding 3” to 47 and 

“subtracting  3” from 25. They claim (p. 171) “that when students apply this strategy to 

sensibly solve different numerical problems they disclose an understanding of the 

relationships of the numbers involved. They show, without recourse to literal symbols, that 

the strategy is generalisable.” Several authors, including Stephens (2006) and Carpenter 

and Franke (2001), refer to the thinking underpinning this kind of strategy as relational 

thinking.  

Solving number sentences successfully using relational thinking certainly calls on a 

deep understanding of equivalence. Students need to know the direction in which 

compensation has to be carried out in order to maintain equivalence (Kieran, 1981; Irwin & 

Britt, 2005; Stephens, 2006). Some children who correctly transform number sentences 

involving addition reason incorrectly that a number sentence such as 87 – 48 can be 

transformed to be equivalent to 90 – 45. These children do not understand the direction in 

which compensation must take place when using subtraction or difference. They fail to 

recognise that the relationship of difference is fundamentally different from addition. Other 

children, however, recognise this feature explaining that in order for the difference to 

remain the same, the same number has to be added to (or subtracted from) each number to 

the left of the equal sign. These children write correctly 87 – 48 = 89 – 50. The first part of 

this study probed children’s thinking with number sentences.  

The Study 

Three groups of number tasks shown in Figure 1 were given to students in Years 5, 6, 

and 7 using a pencil-and-paper questionnaire administered in regular class time. In 

introducing the questionnaire, classroom teachers told students that: 
 

This is not a test. It is a questionnaire prepared by researchers … looking at how students read 

interpret and understand number sentences. For most of the questions there is more than one way of 
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giving a correct answer. Please write your thinking as clearly as you can in the space provided after 

each question and don’t feel that you have to write a lot. 
 

The questionnaire and the teacher’s introduction were translated into Japanese and Thai. 

Each group of problems, shown in Figure 1, was introduced with the words: “Write a 

number in each of the boxes to make a true statement. Explain your working”. 
 

Group A (on one page) Group B (on one page) Group C (on two pages) 

23 + 15 = 26 + � 39 – 15 = 41 – � 746 – 262 + � = 747 

73 + 49 = 72 + � 99 – � = 90 – 59 746 + � – 262 = 747 

43 + � = 48 + 76 104 – 45 = � – 46  

� + 17 = 15 + 24   

Figure 1. Three groups of missing number sentences. 
 

The study involved three cohorts of students Japan (277 students), Australia (301 

students) and Thailand (194 students). Two schools were used in each country with 

students in Years 5, 6, and 7 approximately the same age (10 years old to 13 years old). In 

all schools involved in the study the teaching of computational algorithms forms a key part 

of the curriculum. Even if relational approaches are taught in some schools, they are not 

given the same time or emphasis as computational approaches. In Australia and Thailand, 

the study was carried across all year levels at the one time. In the case of Japan, Year 5 was 

tested at the end of one school year and Year 6 and Year 7 at the start of the next school 

Year. For this reason, the Japan results for Year 5 and Year 6 are considered together, 

whereas Year level results for Thailand and Australia are separated.  

Evidence of Relational Thinking 

Relational thinking is evident when, for example, verbal descriptions, arrows, or 

diagrams are used to compare the size of numbers either side of the equal sign, and where 

these verbal descriptions, arrows or diagrams are used in chain of argument, based on 

uncalculated pairs, using compensation and equivalence to find the value of a missing 

number. By contrast, computational thinking follows a fixed pattern. These features were 

discussed more fully in Stephens (2004, 2006). 

In Group A and B questions, students must complete the calculation on the opposite 

side to where the � is shown, and use this result to find the value of the missing number. 

For example, in the first problem of Group B, students must first find 39 – 15; and having 

found this to be 24, they then need to find the number which taken from 41 gives a result of 

24 (or which added to 24 gives 41) for which the result is 17. In Group C, students must 

first subtract 262 from 746 giving 484, before proceeding to find the missing number by 

subtracting 484 from 747. 

For each group of questions a benchmark sample was prepared, illustrating each score. 

Each student’s work was checked independently by two markers. A high degree of 

consistency was evident across markers in all three countries. Whenever there was 

disagreement between markers, this was usually resolved by the markers themselves – 

usually one had missed an important clue. Very rarely, such disagreements were referred to 

a supervising researcher. Two student responses showing very clear relational thinking are 

given for each group of items in Figure 2. 
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Group A 

• If I take 2 from 17 and add 2 to 22, it is the same as the number sentence after it. (Year 6 student)  

• In 43 + � = 48 + 76, 43 to 48 is + 5, 81 to 76 is – 5. These are equivalent, as you’ve done the same 

action to both sides. (Year 7 student) 

Group B: 

• As 99 is 9 more than 90, the missing number must be 9 more than 59. Therefore the answer is 68. 

(Year 5 student) 

• I added 1 to 104 and 45. As long as I add the same number to both, it (104 – 45) will stay equivalent. 

(Year 6 student) 

Group C: 

• 746 is one less than 747, so 262 is one less than the answer. My answer is 263. (Year 5 student) 

• 746 is 1 unit less than 747, so if you add 263 you will only need to minus 1 unit less than 263 for the 

equation to be equal on both sides. (Year 7 student) 
Figure 2. Selected students’ responses showing relational thinking. 

Scoring procedures. Each group of problems was scored using a five-point scale shown 

in Figure 3. Thus, a single score was assigned to each group of questions even if children 

did not solve each question in the same way. This scoring scheme which had been 

validated for an earlier study (Stephens, 2004) was applied to Groups A, B, and C. 

 
0 – arithmetical thinking evident for all questions; for example, through evidence of progressive calculations 

and use of algorithms to obtain results for additions and subtractions, even where these approaches resulted in 

incorrect answers, and no evidence of any relational thinking; also where an answer only has been given with 

no working shown to indicate what method has been used 

1– a clear attempt to use relational thinking in at least one question, but not successfully executed (e.g., in 

Group B by giving answers of 13, 50 and 103) 

2 – relational thinking clearly and successfully executed in one question, even if other problems are solved 

computationally or by incorrect relational thinking 

3 – relational thinking clearly and successfully executed in at least two questions, but where the remaining 

question or questions are not solved relationally or solved using incorrect relational thinking 

4 – all questions are solved clearly and successfully using relational thinking, even if computational solutions 

are also provided in parallel. 

Figure 3. Scoring rubric. 

Results of the Questionnaire 

Clear evidence of relational thinking was present across all three Groups of questions 

among Japanese and Australian students. In the Japanese Year 5 and 6 cohort, almost 40% 

of students achieved a Score 4 (accomplished relational thinking) on Group A. The 

proportion of Score 4 was nearly 25% for Group B, and a little less than 20% for Group C. 

On the other hand, the proportion of Year 5 and 6 students who obtained Score 0, by using 

clear computational approaches or providing no evidence of relational thinking, ranged 

from about 35% for Group A, to 40% for Group B, and 65% for Group C. By Year 7, the 

proportion of Score 4 performances increased for all three groups of questions. This 

increase was not offset by an equivalent fall in the proportion of Score 0 performances that 

fell only slightly from Years 5 and 6 to Year 7. The increase in Score 4 performances in the 

Year 7 cohort was matched by reductions in the proportion of Scores 2 and 3. Although the 

Japanese mathematics curriculum seems to favour the development of relational 

approaches among many students, many other students still seem unable to or prefer not to 

use them.  
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The vast majority of Thai students used computational approaches in all three Groups 

of questions. In Year 5, no Thai student scored 4 on any group of questions. In Year 5, the 

proportions  of  Score 0  were 83% (Group A), 92% (Group B) and 98% (Group C).  In 

Year 6 the average of Score 0 across the three groups of questions was 90%. In Year 7, it 

was 84% with gradual increases in the proportion of students in Years 6 and 7 achieving 

between Score 2 and Score 4. The gradual emergence of relational thinking in the Thai 

cohort seems more likely to be the result of individual student insight rather than an 

intended result of the mathematics curriculum. 

The two Australian schools showed wide variation in the use of relational strategies. 

Looking only at the Year 6 cohorts in the two schools, the proportion of Score 0 results for 

Group A, B, and C questions in School 1 was 60%, 64%, and 78% respectively, compared 

to 34%, 32%, and 48% in School 2. Similarly, the proportion of Score 4 results for Group 

A, B, and C questions in School 1 was 25%, 9%, and 16% respectively, compared to 48%, 

30%, and 46% in School 2. The reason for this marked difference is that in School 2 

relational approaches are featured explicitly in the mathematics curriculum, whereas in 

School 1 they seem not to be emphasised. 

Stability of Thinking 

How consistent were students in their use of relational or computational approaches 

across the three groups of problems? Students were classified into three groups: those 

students who used relational strategies across all three groups of problems (SR–Stable 

Relational); those students who used only arithmetical or computational approaches across 

all three groups of problems (SA–Stable Arithmetical); and those students whose thinking 

was not consistent across the three groups (NS–Not Stable). The following rule was used. 
 

SR: if student scored � 1 on each of Group A, B, and C 

SA: if student scored 0 on each of Group A, B, and C 

NS: if student scored � 1 on one or two of Group A, B, or C; and 0 on other(s). 
 

A criterion of � 1, instead of � 2, across the three groups as evidence of stable 

relational thinking was justified because a score of 1 on Group B was without exception 

associated with successful relational thinking (� 2) for Group A and/or Group C questions. 

Aside from responses to Group B where students compensated in the wrong direction, a 

score of 1, indicating incorrect relational thinking, was very rarely given for responses to 

Group A and Group C questions. 

How do Relational Thinkers Deal Successfully with Symbolic Sentences? 

What evidence is there that students who successfully apply relational thinking to solve 

number sentences are able to extend these processes to solve sentences that are explicitly 

algebraic? Linchevski and Livneh (1999) point to the structural relations that students need 

to understand from arithmetic if they are to move successfully into algebra. MacGregor and 

Stacey (1999) also contend that deeper understanding of numerical operations is linked to 

later success in algebra. Using symbolic terms makes it more difficult for students to use 

computational checks. Some students solve symbolic expressions, such as x + 3 = 21, by 

drawing on their knowledge of number facts, or using guess-and-check methods. But 

another type of symbolic sentence, true for all values of the literal symbol, can be used to 

probe students’ understanding of the meaning of symbolic expressions. This type of 

question, shown in Figure 4, was used to probe whether there is a clear link between 
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successful application of relational thinking applied to number sentences and students’ 

ability to understand the structure of symbolic sentences. 

 

Place the four numbers n – 1,  n + 5,  7 and 1 in the four boxes below so that the statement is always true. 

  

                                     +                     =                     +                 

             

                     Box A             Box B              Box C           Box D 

Explain why your answer is correct. 

Figure 4. Making a sentence that is always true. 
 

Students in Years 5, 6, and 7 in three countries had not been introduced to “always 

true” symbolic expressions. (Of course, many students by Year 5 have met single-value 

missing number sentences, such as � + 3 = 21.) Some students did not attempt the 

question, or they wrote a sentence which is not true for all values of n, for example by 

writing a sentence which has the four numbers in boxes in the order in which they appear 

in the question. Some other students wrote a correct sentence but could not explain why it 

was true for all values of n. On the other hand, several possible approaches were used by 

students to explain why their sentence is always true. These various possibilities informed 

the partial-credit scoring rubric shown in Figure 5 used to grade students’ responses. 

 

NR – no response to the question involving literal symbols and number terms 

Score 0 – incorrect or inadequate relation, no evidence of relational thinking  

Score 1 – correct relation shown but no explanation given 

Score 2 – correct relation shown, and correctly illustrated with one or more numerical values 

Score 3 – correct relationship shown, and successfully illustrated by showing a balance with respect to the 

numbers, “ignoring” n terms; or by generally referring to balance among terms 

Score 4 – correct relationship shown, and explained by explicit reference to the numbers and the n terms 

being equivalent on both sides, whatever the value of n, or by showing that the same algebraic structure exists 

on both sides.  

Figure 5. Rubric used for scoring question involving literal symbols. 

 

The following responses formed a benchmark sample for a score of 4, 3, or 2 for this 

question. 

Exemplifying Score 4. A Year 6 student, having written, 7 + n − 1 = 1 + n + 5, said: 

“This answer is correct because you will always get an answer 6 more than n, because n 

less 1 plus 7 will give us 6 more than n. Also because n more than 5 plus 1 will give 6 

more than n. This will have a lot of different answers but you will always get an answer 

6 more than n.” 

A Year 7 student wrote n − 1 + 7 = n + 5 + 1, and explained: 

“My answer is correct as no matter what n is, n − 1 is 6 units less than n + 5. This is 

balanced as 7 is six units more than 1.” 

Exemplifying Score 3. A Year 7 student wrote n − 1 + 7 = n + 5 + 1, and wrote: 

“7 and n − 1 become 6; n + 5 and 1 become 6. Both sides are equivalent to 6”. 

Exemplifying Score 2. A Year 5 student wrote 1 + n + 5 = 7 + n − 1, and then let n = 5 

showing that  

1 + 5 + 5 = 7 + 5 − 1. No reason was offered to show why the statement is always true. 
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There  were  some  clear  associations  between  highly  accomplished  explanations 

(Score 4) given to this question involving literal symbols and accomplished relational 

thinking used on the number sentences. For example, in Japan in Years 5 and 6, all 6 

students who scored 4 on the question involving literal symbols also scored at least one 4 

on the number questions. In Japan, where 54 Year 7 students scored 4 on this question, 44 

showed very clear relational thinking on the number sentences, even if this was not always 

scored as high as a 4. In Australian School 2, the same applied to all 10 students in Years 5 

and 6 who scored 4 on this question. Further, no student in Years 5 and 6 in any of the 

three countries who scored 0 on all three groups of number sentences scored 4 on the 

question involving literal symbols. This pattern was almost perfectly replicated in Year 7 

cohorts.  

Very many students who gave highly accomplished responses (Score 4) to this question 

applied compensation to the two terms involving literal symbols and to the two number 

terms, showing equivalence, whatever the value of n. Is there a clear connection between 

relational thinking on number sentences and success on the question involving literal 

symbols? Put most simply, one might expect a strong connection between those students 

who were classified as Stable Relational (SR) thinkers on the three groups of number 

sentences and their success in dealing with the question using literal symbols. A 

consequence of this “strong” position, if it were true, is that students who were classified as 

Stable Arithmetical (SA) on the three groups of number sentences would be less likely to 

deal successfully with the question involving literal symbols. These positions are now 

analysed. 

Using Relational Thinking on Number Sentences (SR) as a Predictor 

The following table gives the numbers of students who were classified as SR who also 

obtained a score of � 1 on the question involving literal symbols (SR/LS). Their success 

rate is then compared to the percentage of their cohort in dealing successfully (i.e., obtained 

a score of � 1) with the question involving literal symbols (LS).  

Table 1 

Using Stable Relational Thinking (SR) as a Predictor 

Country Cohort Number of 

SR students 

Number (%) 

SR/LS 

Number (%) of 

LS in cohort  

Japan Year 5/6 N = 133 41 32 78% 70 53% 

 Year 7 N = 144 56 55 98% 127 88% 

Australia Year 5 N = 41 8 4 50% 13 32% 

(School 1) Year 6 N = 45 8 0 0% 3 7% 

 Year 7 N = 44 9 7 77% 27 61% 

Australia  Year 5 N = 50 13 7 54% 17 34% 

(School 2) Year 6 N = 50 27 22 81% 31 62% 

 Year 7 N = 71 49 44 92% 58 82% 

Thailand Year 5 N = 53 N/A N/A N/A 

 Year 6 N = 64 N/A N/A N/A 

 Year 7 N = 77 4 2 50% 21 31% 
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This criterion seems to work well in Years 5 and 6 in Japan and Australian School 2 

where the number of students classified as SR is comparatively high. In these two groups, 

the success rate of students who showed stable relational (SR) performance on the three 

groups of number sentences was almost 20% higher in obtaining a score � 1 on the 

question involving literal symbols than the general success rate. The strength of connection 

is not as strong in both groups in Year 7 where the success rate of the SR performers on the 

number sentences is only 10% higher than the general success rate. Ceiling effects begin to 

emerge in the Year 7 in Japan and in Australian School 2 where 88% and 82% respectively 

of students in Year 7 were able to deal successfully (Score � 1) with the question involving 

literal symbols. 

However,  serious difficulties exist in the application of the criterion in Year 5 and 

Year 6 the Australian School 1 and in the Thai cohort where few students were able to be 

classified as SR on the number questions, and where few were also successful on the 

question involving literal symbols. The criterion could not reasonably be applied in the 

case of Years 5 and Year 6 in the Thai cohort where only one student was classified as SR; 

and where in Year 5 only two students scored � 1 on the question involving literal symbols. 

In Thailand in Year 6, however, 12 students scored � 1 on the question involving literal 

symbols, despite the paucity of stable relational (SR) thinkers on the number sentences. 

Even in the Year 7 Thai cohort, the number of students classified SR was too small (4) to 

allow any reliable predictions. Similar difficulties also occur in Australian School 1 where 

only 3 students in the entire Year 6 sample scored � 1 on the question involving literal 

symbols. 

Using Arithmetic Thinking (SA) as a Predictor 

How well did those students who met the criterion for Stable Arithmetic (SA) – that is, 

those who scored 0, 0, 0 on all three Groups of number sentences – perform on the 

question involving literal symbols? Given the difficulties applying the preceding test to the 

entire Thailand cohort and to Australian School 1, this test becomes more important. In 

Australian School 1 in Year 6, 23 students scored 0 on all three groups of number 

sentences. Of these 23, 21 were graded either NR or 0 on the question involving literal 

symbols, with only one of the 23 obtaining a 1 for this question, and one other obtaining a 

2. In Year 5, 28 students got a 0 on all three groups of number sentences. Of these 21 got 

either NR or 0 (no success) on the question involving literal symbols, with four obtaining 1 

for this question, and three obtaining a 2. 

Likewise, in the Thailand cohort, there is a strong connection at each Year level 

between SA thinking on number sentences and failure to deal successfully with the 

question involving literal symbols. However, even for this cohort, the strength of this 

connection declines with each additional Year level. With each successive year level, more 

students classified as SA on the number sentences are able to score � 1 on the question 

involving literal symbols. These results across all cohorts of Years 5, 6, and 7 students are 

given in Table 2. 

The predictive value of this criterion seems to be strongest in Years 5 and 6 in all three 

country samples. Its predictive force is still quite strong in Thailand in Year 7; much less so 

in Year 7 in the Australian schools; and not at all in Year 7 in Japan. It may be argued that 

by Year 7 more students are familiar with literal symbols and so are able to deal 

successfully with the question involving literal symbols. 
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Table 2 

Using Stable Arithmetical Thinking (SA) as a Predictor 

Country Cohort Number of SA 

students. 

SA students with no success on 

literal symbol question 

Japan Year 5/6 N = 133 37 25 68% 

 Year 7 N = 144 43 12 28% 

Australia Year 5 N = 41 28 21 75% 

(School 1) Year 6 N = 45 23 21 93% 

 Year 7 N = 44 24 13 54% 

Australia  Year 5 N = 50 18 16 89% 

(School 2) Year 6 N = 50 15 9 60% 

 Year 7 N = 71 11 5 45% 

Thailand Year 5 N = 53 43 41 95% 

 Year 6 N = 64 51 44 86% 

 Year 7 N = 77 55 44 80% 

 

There are some students, more in Japan and Australia than in Thailand, who are able to 

adopt relational thinking for the question involving literal symbols, even though they 

showed no evidence of relational thinking on the number sentences. These students can 

exercise choice; they are able to apply relational strategies when required in the case of the 

sentence involving literal symbols. For example, in the Japanese Year 5 and 6 cohort, 37 

students obtained 0 on all three groups of number sentences, with 25 of these receiving 

either NR or 0 for the question involving literal symbols. Of the remaining 12 students, five 

received a score of 1, four a score of 2, and three a score of 3. The competent performances 

(Score 2 and Score 3) of these 5 students had not been preceded by any relational thinking 

in their work on number sentences. In Australian School 2 in Year 6, of the 15 students 

who scored 0 on all three groups of number sentences, 9 of these received either NR or 0, 

but three students received a score of 1 on the question involving literal symbols, and a 

further three also obtained a score of 2. By Year 7 in Thailand, 11 students classified as SA 

(0, 0, 0) on the number sentences achieved scores ranging from 1 to 3 on the question 

involving literal symbols. 

Discussion of Limitations and Future Directions 

In statistical analyses where some clear associations are present but not definitive, it is 

important to ask why this is so. The first and most obvious comment is that the three 

groups of number sentences may not have separated those who were capable only of 

thinking computationally from those who chose to solve the number sentences 

computationally but who could have used relational approaches to solve these sentences if 

pressed to do so. Some of these “computational” students applied relational approaches to 

deal more or less successfully with the expression involving literal symbols. Students who 

are competent calculators may prefer that approach even though it is much more 

demanding than relational thinking in the case of Group C, and somewhat more demanding 

in the case of Group A and B questions.  

Mathematics: Essential Research, Essential Practice — Volume 2

685



  

It should be remembered that no student who consistently solved the number sentences 

computationally was able to achieve the highest score (Score 4) on the question involving 

literal symbols, although there were quite a few who produced an expression in the correct 

form but with no explanation (Score 1) and others who were able to justify their choice of a 

correct literal expression by using one or more values of the literal symbol (Score 2). Those 

with Score 1 who produced an expression in the correct form – without explanation or 

justification – may have used strategies such as “guess-and-check” that fall a long way 

short of deep relational thinking.  

It is also clear that some students who appeared to be stable relational thinkers (SR) did 

not deal successfully with the question involving literal symbols. Among this latter group 

might be those who solved only some of each group of number sentences relationally. It is 

a big jump from being able to apply relational thinking to complete an already formed 

number sentence to being able to construct and justify an “always true” sentence involving 

literal symbols and numbers in an equivalence relation. Although the findings of this study 

support the view of Linchevski and Livneh (1999) that many of algebraic relations met by 

students inherit the structural properties associated with number sentences with which 

students are, or should be, familiar, it is clear that the missing number questions were not 

sufficiently sensitive to elicit and identify the kind of relational thinking that students 

needed in order to solve the question involving literal symbols.  

Some students may have used grouping and simplification techniques to deal with the 

question involving literal symbols even if they had chosen to solve by computation all the 

number sentences. From our study of the curriculum documents of the three countries we 

were confident that students in Year 7 had not been taught these techniques, but this cannot 

be ruled out for every student.  

Is it possible to introduce an extra question that would press those who chose to solve 

the number sentences computationally to disclose any latent relational understanding, and 

at the same time to discriminate among relational thinkers? To these purposes, a question 

modelled after the research programme, Concepts in Secondary Mathematics and Science, 

(CSMS, see Hart, 1981) might ask students:  

What can you say about c and d in the following mathematical sentence? 

c + 2 = d +10 

If equivalence and compensation are at the heart of relational thinking, the goal of this 

question is to have students say that this sentence will be true for any values of c and d 

provided c is 8 more than d. But there are intermediate responses that fall short of this 

understanding. Computational thinkers are likely to be able to give several values of c and 

d for which the sentence is true. They may even offer several pairs without seeing that the 

values are part of a pattern. More developed responses could be expected to give pairs in a 

systematic list such that (c, d) could be (9, 1), (10, 2), (11, 3), (12, 4). In this case, are 

students able to generalise a rule connecting c and d? It might also be possible to probe 

whether students can give a clear mathematical sense to sentence being true for “any values 

of c and d provided c is 8 more than d”. Such responses might make it clear that, for 

example, fractional or decimal values are possible – or even negative numbers. Being able 

to derive a correct mathematical generalisation from numerical examples is key element of 

algebraic reasoning (Carpenter & Franke, 2001; Lee, 2001; Zazkis & Liljedahl, 2002). 

A similar question could be constructed for probing relational thinking about 

subtraction. The value of questions such as these is that they can be given a limited 

meaning by computational thinkers, but they can only be answered in any depth using 
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relational thinking. A fully elaborated response needs to show that the relationship is 

determined by the operation as well as the specific numbers involved, and that the sentence 

can be true for any values of c and d where the given condition is met. This kind of 

question is likely to be a better predictor of success in dealing with literal expressions. 

Conclusion 

Students’ use of relational thinking to solve number sentences is evident in all three 

countries by the end of elementary school. The extent of its acquisition varies between 

countries and between schools. Even where it appears to be strong, there are still many 

students who seem unable to use it. Those who were consistent relational thinkers on 

number sentences were more likely to deal successfully with a sentence involving literal 

symbols and number terms than those who showed only arithmetical thinking on the 

number sentences. In all three countries, particularly in Years 5 and 6, the majority of this 

latter group was unable to deal successfully with the sentence involving literal symbols. 

This group especially should concern teachers. They may obtain perfectly correct answers 

to number questions through careful use of computational based approaches, but these 

approaches are clearly deficient when students are confronted with questions using literal 

symbols where computation will not work. Their inability to use relational thinking means 

that they are not well prepared to deal with the kinds of thinking – in particular, those 

involving equivalence and compensation – that they will need in high school algebra. More 

importantly, one should ask how much better their understanding of number and 

arithmetical operations might have been in primary school if they had been introduced to 

and were able to use relational strategies to solve number sentences. 
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